
Self-duality and modular invariance in gauge theories

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 3895

(http://iopscience.iop.org/0305-4470/23/17/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 3895-3901. Printed in the UK 

Self-duality and modular invariance in gauge theories* 

Leah Mizrachit 
Departement de Physique Thkorique, Universitk de Gentve, CH-1211 Gentve 4, 
Switzerland 

Received 14 November 1989 

Abstract. It is shown that self-duality of gauge theories in the large-N limit when g 2 N  is 
kept finite extends to an invariance under the full modular group in parameter space when 
a &term is included. We suggest using modular covariant combinations of modular forms 
to construct the generating functional in the large-N limit. This fixes the phase transitions 
to be on the boundaries of the horocircles defining the fundamental domain of the modular 
group. 

Duality is a general concept relating physical quantities in different regions of parameter 
space. So far there has been use of various duality relations in very different fields of 
physics, where in all cases the parameter multiplying the kinetic term in the Lagrangian 
gets inverted by the transformation, thus relating a strong to a weak coupling region 
in parameter spaceS. This is the case of Kramers-Wannier duality [ 11 in lattice models 
where the role of a coupling constant is played by the temperature, and for self-dual 
models, i.e. those invariant under the transformation the phase structure in parameter 
space can be analysed [2]. Another example is electric-magnetic duality in Abelian 
gauge theory which is invariant under the interchange of electric and magnetic fields 
provided both electric and magnetic charges appear in the model. Interestingly enough, 
magnetic charges are proportional to the inverse of the electric ones as dictated by 
Dirac quantisation condition. Indeed, in both cases the duality transformation can be 
implemented by a Fourier transform in function space [3], thus leading to the inversion 
of the coupling parameter (temperature in lattice models or electric charge in gauge 
theory). In gauge theory, though, an additional SO(4) rotation in Euclidean spacetime 
has to be performed in order to interchange the roles of electric and magnetic fields$. 
With the same technique one can analyse non-Abelian gauge theory [ 51, which strictly 
speaking is not self-dual, yet for weak coupling [ 6 ]  or equivalently in the large-N limit 
it becomes self-dual provided g 2 N  is finite [7]. Here again it is an electric-magnetic 
duality [8], as in the non-Abelian models magnetic charges are built in intrinsically 
due to the existence of the 't Hooft-Polyakov monopoles [ 9 ]  (or Wu-Yang monopoles 

* This paper is based upon the University of Geneva preprint UGVA-DFT 1989/01-603 (January 1989). 
t Supported by the Swiss National Science Foundation. 
$ In the more general case the dual coupling parameter is a decreasing function of the original one, and 
becomes the inverse coupling only within the Gaussian approximation. 
5 A similar SO(4) rotation was suggested by 't Hooft [4], in his attempt to define electric-magnetic duality 
in non-Abelian gauge theory by isolating the contributions of electric and magnetic vortices. 
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in pure Yang-Mills theory [lo]). Other duality relations, e.g. the duality between scalar 
and antisymmetric tensor field theories [ 111, or the invariance in compactified string 
models under the interchange R + 1/2R [ 121 (where R is the radius of compactification) 
can also be studied this way; i.e. by performing the Fourier transform in function 
space. This last invariance turned out to be very useful in relating and classifying 
conformal field theories with C = 1 [13]. 

An extension of this technique to models where the generalised kinetic term is not 
diagonal in function space is almost immediate thus proving the invariance of c+-models 
under the transformation (G  + B )  +a(  G + B)- '  [ 141, (G and B are the background 
metric and the antisymmetric tensor field respectively), or getting the duality relation 
in gauge theories with &term. For this last case it turns out to be useful to define a 
complex parameter lLi 

e 2.rr l L = - + i T  
2.rr Ng 

which gets inverted by the duality transformation both on the lattice [15] and in the 
continuum [ 16,171. In addition, the invariance of the lattice model under e + 8 + 2 7 ~  
turns, in fact, the duality transformation into a modular transformation in parameter 
space generated by two transformations 

1 
5 J + - -  (2a)  

5 + 5 + 1 .  (2b) 
Thus the self-dual lattice models containing the 0-term become modular invariant. 
This modular invariance was emphasised in [15] and was used to suggest the phase 
structure of this type of models provided there is at least one point of phase transition 
in the coupling parameter g (temperature for lattice models). 

We would like to point out here that this modular invariance is a property of gauge 
theories in the large-N limit provided g 2 N  is kept finite. Furthermore, we propose in 
the following a form for the partition function of large-N Yang-Mills theory when 
e f 0, which can be used to probe into the phase structure of the theory. This is an 
extension of a previous proposal [7] for the partition function of large-N Yang-Mills 
theory when e = 0. Undoubtedly a knowledge of the phase structure of non-Abelian 
gauge theory would be very useful in understanding confinement. 

We recall that duality transformation in gauge theory is implemented by performing 
a Fourier transform in function space accompanied by an SO(4) rotation in Euclidean 
spacetime [3]. Using the radial gauge [l8]$ 

where A;(x) are the gauge potentials, the generating functional can be written as 
x,A;(x) = 0 (3) 

t This defines the parameter LL for lattice models. We will later on define the appropriate parameter lG for 
gauge theory (equation (18)). The difference results from the different normalisations of the kinetic and 
&term in gauge theory compared with the lattice model (see [lS, 161). 
$The duality transformation can be performed in a gauge independent way [19] (see also [16]), whereas 
the radial gauge used here simplifies the large-N limit. Renormalisability within this gauge condition was 
discussed in [20], where its similarity with the axial gauge was emphasised. (For a general review of various 
gauge conditions and their properties see [21], whereas applications of the radial gauge can be found in [22].) 
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where 

F;,=a,A~ -a,A; +yb'A;A'y ( 5 )  

F:" = &LupuF;u (6) 

is the field strength with rb' as structure constants of the gauge group, 

and J: is the external source. Performing now the duality transformation in the radial 
gauge (3) it can be shown that the dual model in the large-N limit is the same as the 
original one provided g2N is kept finite [7]. The gauge potentials of the dual theory, 
I?:, also satisfy the radial gauge condition (3), whereas the dual coupling constant, 
g h ,  and the dual $-parameter, OD, are given by [16, 171 

- 4 ~ r ~ N * $  
e -  (7b) D - ( 8 ~ 2 / g 2 ) 2 + $ 2 '  

To get this result the identity 

(8) 
was used [17]. Here c is an (infinite) constant which can be ignored as it will cancel 
out once correlation functions are studied [7], and cy, p are arbitrary non-zero para- 
meters satisfying 

p 2 / .  = 1. (9) 

The identity (8) is in fact the essence of the duality transformation, which involves a 
Fourier transform in function space and an SO(4) rotation (coupling of F;y to k;,, 
which is defined as in ( 6 ) ) .  We note, in particular, that the coupling parameter is 
inverted ( g  + l / g )  in the process of the transformation. Taking 8 = 0 in (4) the para- 
meters cy and p can be fixed once the integration over A; is carried out. Substituting 
(8) in (4) and using the inversion formula [18] 

which is valid in the radial gauge (3) we can integrate A: in (4) and get the dual 
theory defined in terms of the new variables KEY. Studying now the large-N limit 
when g2N is finite, we find that KLy are fixed to be the dual field strength, GLv, 
defined in terms of the dual gauge potentials, B z ,  as in ( 5 ) .  Other interaction terms, 
which are not of the gauge type (involving an antisymmetric tensor field O J : ~  satisfying 
the condition X , W ~ ~ ( X )  = 0), disappear in the large-N limit?. There is an additional 
surface term, though, i p / 2  d4x GEY6:Y which is generated by the duality transforma- 
tion even when 8 = 0 in the original theory [6,16]. Noting that for SU( N) gauge group 

t When performed in a gauge independent way the dual fields K:" are constrained to satisfy the Bianchi 
identity [ 16, 191, whose general solution can be found in [231 (see also the appendix of [19] for a perturbative 
approach to this solution). The dual theory turns out to be a gauge theory coupled to two vector potentials 
satisfying generalised gauge invariance [23]. 
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this surface term can be written as [24] 

m. k 
d4x G",G;, = n +- N 

where n is the Pontryagin index (second Chern class index), k = ( k x ,  k,, k , )  is the first 
Chern class index associated with vortices arising from the twisted boundary conditions 
in the x, y ,  z directions and m = ( m x ,  my,  m,) are the magnetic charges. Both k and m 
are integers defined modulo N, and n is an integer. Thus up to a factor 3 2 ~ '  the 
surface term (11) is a rational number. Hence if we take 

N p = -  
457 

we find the sontribution 

enp[ -2 1 d4x GzY&EY = 1 I 
It is one for all the instanton contributions including those with twisted boundary 
conditions [24], and it disappears from the dual theory [17]. Note that had we taken 
p = N / ~ T ,  as in [17], (13) would still be valid. However, we will later on see that for 
the choice (12) for ,B the theory is manifestly invariant under the full modular group 
SL(2, Z) once we add the $-term. Whereas for the choice p = N / ~ T  only the invariance 
uoder the subgroup r: of the modular group would be manifest. With the choice (12) 
for p we find 

N 2  
1 6 ~ '  

and the dual coupling constant constant when 0 = 0 becomes 

457 
g --. 

D -  Ng 

When 0 # 0 an identity similar to (8) can be used. Here a complex parameter 

1 i0 

g 
z * = - i * s  

has to be defined?, then the Euclidean action in (4) gets diagonalised for 

F:u = 5(F,, f (17) 

with coefficients zF in front of the terms f (F: , )*  respectively, thus resulting in the 
transformation z, + a / z*  when the Fourier transform (8) is used. Continuing as before 
we choose a and p as in (14) and (12) respectively in order to eliminate the surface 
term generated by the duality transformation itself. This, though, would not eliminate 
the $-term from the dual theory as (13) is not necessarily valid for an arbitrary coefficient 
0 in front of the surface term. Instead, we find the dual parameters g ; ,  OD given as 
in (7); they are defined from the real and imaginary parts of z, (or z - )  in (16), after 
its inversion by the duality transformation [ 16, 171. 

t We scaled here the parameters z ,  of [16] by a factor 8v2, as the transformation of z ,  as defined in (16) 
is simpler than that for the parameters defined in [16]. 
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Since the parameter 0 in (4) is proportional to a rational number (see (ll)), we 
find the additional invariance 6 + 0 + 2rN. Thus by defining the parameter CG 

iz- 6 47T lG = - = - + i 7 
cz 2 r N  g N  

we find that the model is invariant under the transformations (2), which generate the 
full modular group SL(2, Z). Note that had we taken p = N/87~,  we would have found 
the invariance under r:c SL(2, Z)  which is generated by (2a)  and lG+ i G + 2 .  Thus 
the invariance under full modular group would not be manifest. 

We have thus shown that SU( N) gauge theory is invariant under modular transfor- 
mations in parameter ( g ,  e )  space in the large-N limit provided g 2 N  is finite. Note 
that Re iG can be neglected in this limit when 6 is finite. However, when the whole 
range of 6 is considered it has to be kept, thus recovering the full modular group. This 
modular invariance was emphasised in the analogous lattice model in [15]. The 
difference, though, is that in gauge theory it is valid in the large-N limit only (when 
additional interaction terms can be ignored [ 7 ] ) ,  whereas in the lattice model it is an 
exact statement. 

Once we know that we have modular invariance the partition function can be 
constructed from modular covariant combinations of modular forms [25], much the 
same as partition functions in string models are constructed. The difference, though, 
is that here the modular parameter lG (or rL for lattice models) is not integrated over, 
whereas the modular parameter 7 defining the torus of a closed string model (for genus 
one), is integrated over the classical fundamental region of the modular group with a 
modular invariant measure (and modular invariant partition function). 

Noting that modular forms are bounded beyond a strip Im lG5 d in the complex 
lG plane where d is some positive constant, we find that the partition function would 
be a well-behaved function for 4 r / g 2 N  > d. In addition, in the region 0 < Im lG < d 
modular forms are bounded within the horocircles I & -  ( p / q )  -idp,41 < dp,4, which are 
circles of radii dp,q centred at p/q+idp,,. Here p / q  is a rational number and dp,q is a 
positive real number. Thus the possible phase transition regions for the large-N gauge 
theory would be the boundaries of the horocircles (see figure 1) defining the funda- 
mental domain of the modular group [25]t. This would be correct provided g Z N  is 
kept finite. Adding the large N corrections (which are damped by factors of e-N [ 7 ] ) ,  
cannot change the phase structure as long as the large N expansion is valid. This is 
due to the fact that the boundaries between different phases are regions of singularities, 
which cannot be shifted by a viable expansion within its radius of convergence. The 
question is, of course, how far one can push N and still have the same results as in 
the large-N region. Here, a knowledge of the radius of convergence of the expansion 
is needed. 

The modular invariance of gauge theories in the large-N limit when g 2 N  is finite, 
is linked with the existence of the twisted configurations (1 1). Of particular importance 
are the vortices which have long been conjectured to be responsible for confinement 
in gauge theory, even though it has never been really proven. With the self-duality we 
found [7], it may be possible to write a strong coupling expansion which could be 
used to study this question more quantitatively. The inversion of the effective coupling 
parameter may be useful for this end. 

t A similar phase structure was found in [15] for the lattice Z, model. 
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Figure 1. The horocircles in the complex Lc plane centred at p/q+id,,, with radii dp,q 
where p / q  is a rational number and dP,, is a real positive number. These are the regions 
of possible phase transitions in large-N gauge theory provided g 2 N  is kept finite. For 
Im lG> d (where d is a positive integer) the modular forms defining the partition function 
in this limit are bounded functions of lG. 

It is tempting to end this paper with a few speculative remarks. Modular invariance 
is an essential property of closed string models. It is related to the conformal invariance 
of the two dimensional model. This conformal invariance yields on the one hand the 
Virasoro algebra (or more generally the Kac-Moody algebra, when there is in addition 
an invariance under a gauge group G), and the fusion rules on the other hand. These 
fusion rules were conjectured [26] and proven E271 to be diagonalised by the generators 
of the modular transformations (2a) .  They also generate the dual diagrams of the 
Veneziano amplitude (which is yet another concept of duality, here related to the 
fusion rules). Alternatively, the Kac-Moody algebra was found to be responsible for 
the integrability of various models [28]. (A general review on integrability of quantum 
theories can be found in [29].) The question we raise is: does that mean that similar 
properties may be found in gauge theories in the large-N limit? It is, of course, 
important to note that in string theory modular invariance is found in T, which is not 
a parameter of the theory, as it is a variable of integration. Yet the invariance R + 1/2R 
in the compactified string models [ 121 (or G +  B) +a(  G+ B)-' [ 141 in the a-model 
approach to string theory) is essentially of the type we are talking about (Kramers- 
Wannier duality [l]) ,  as these (R, G, B )  can be thought of as parameters of the string 
theory. Indeed, it was pointed out in [30] (see also [28]) that Kramers-Wannier duality 
leads in general to the existence of an infinite set of conserved charges, here the infinite 
set of generators of gauge theory in the large-N limit, thus making it closed to an 
integrable system [29]. Furthermore, string theory is a theory of extended objects 
(vortices); is this a coincidence only or can that be used to get a better understanding 
of confinement which is so tightly related to the existence of vortices. 
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Note added. After completing this paper we became aware of [31] where it has been suggested that classical 
Yang-Mills theory in the large-N limit possesses an additional gauge invariance; that of area preserving 
coordinate transformations of an internal sphere attached to every spacetime point. It is based on the 
isomorphism between the algebra of SU( N )  gauge theory when N + CO and the infinite dimensional algebra 
of area preserving diffeomorphisms of a relativistic spherical membrane (after gauge fixing), which was 
proven in [32]. This seems to us related to the ideas presented in this paper. 
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